Existence result for semilinear elliptic systems involving critical exponents

نویسنده

  • S Khademloo
چکیده

where ⊂RN (N ≥ ) is a smooth bounded domain such that ξi ∈ , i = , , . . . ,k, k ≥ , are different points, ≤ μi < μ̄ := (N–  ), L := – · – ∑k i=μi · |x–ξi| , η,λ,σ ≥ , a,a,a ∈ R,  < α, β < ∗ – , α + β = ∗. We work in the product space H ×H , where the space H :=H ( ) is the completion of C∞  ( ) with respect to the norm ( ∫ |∇ · | dx)   . In resent years many publications [–] concerning semilinear elliptic equations involving singular points and the critical Sobolev exponent have appeared. Particularly in the last decade or so, many authors used the variational method and analytic techniques to study the existence of positive solutions of systems of the form of (.) or its variations; see, for example, [–]. Before stating the main result, we clarify some terminology. Since our method is variational in nature, we need to define the energy functional of (.) on H ×H

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

The Nehari manifold for indefinite semilinear elliptic systems involving critical exponent

In this paper, we study the combined effect of concave and convex nonlinearities on the number of solutions for an indefinite semilinear elliptic system ðEk;lÞ involving critical exponents and sign-changing weight functions. Using Nehari manifold, the system is proved to have at least two nontrivial nonnegative solutions when the pair of the parameters ðk;lÞ belongs to a certain subset of R. 20...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013